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Abstract

Relations among non-increasing (right or left) continuous rearrangements and medians
are discussed, and then equivalences of (quasi-)norms of weak Lebesgue space are given.
Most part of the statements in this note are not results by the author. These are already
known and applied in several literatures.

1 Introduction

In this article, we assume that f is a measurable function, from R" — R U {Zo00}, satisfying
|f(z)] < oo a.e. This property is fulfilled if f € LP*>, (p € (0,00)), for example. For a
measurable subset 2 C R”, || means the n-dimensional Lebesgue measure of ). Let £ C R”
be a non-empty measurable subset with finite volume |E|, and a € (0,1). The distribution
function of f is denoted by

de(A) == [{z € R% [f(2)[ > A} =0

for A € [0, 00). This is right continuous on [0, 00). We define inf §) := co. We use the fact that
R™, with the Lebesgue measure, is a non-atomic space.

We discuss pointwise relations among the following non-increasing rearrangements:

R[f](t) :=inf{A > 0:d;(\) <t} =inf{A > 0:ds(\) <t} >0
Ly[f](t) :=inf{A > 0:dy(\) <t} =inf{A > 0:df(\) <t} >0
il

Lo[f)(t) := sup inf |f(x)] >0,

jAl=t €
for t € (0,00). I think that R[f] is the most popular one, and it is well known that R[f] is
right continuous on (0, c0) and is equimeasurable with |f|. The author had firstly encountered
others in papers by Lerner [6] and [7], see also [1] and [3]. The main purpose of this note is
to give proofs of fundamental facts for these rearrangements and median. I should emphasize

that most part of propositions in this note are already known, although the author could not
find proofs in literatures.

In Section 2, we give a proof of the following

R[f](t) < Li[f1(t) = La[f](t) for t € (0,00)
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After that, we show the left continuity of L[f] = Li[f] = La[f] on (0,00) and the equimea-
surability of f and L[f]. Owning to their continuities, the inequality L[f](t) < R[f](t) fails in
general. One can see this by considering simple functions.

The local analogy involving medians

Rfxel(alEl) <myg(1 — o, E) < Li[fxel(alEl) = L[ fxsl(al E])

is considered in Section 3. The median m¢(a, E) of f over E with a € (0,1) is a real number
satisfying

HE : f<my(a,E)} <alE] & {E:f>ms(a,E)} <(1-a)lE| (1)
Median is not unique. To avoid this inconvenience, it is useful to consider the maximal median:
M¢(a, E) :=max{m e R: [{E: f <m}| < a|E|}|

Medians can be regarded as an average of f on E in the sense of L*, on the other hand
|E|™" [, fdz is an average in the sense of L'. We see that My(a, E) is well-defined and a
median.

In Section 4, we show that:

1A = Il Zoce & N f Loy = I ooy = I Lo

where
171 5= sup Ay 0)7 = sup 7 R[]0
A>0

t>0
1fl| 7o = sup /P L[f](t)

t>0
71 Eseiy = 1l Foe = suD (ol D) RIfx] ol E])
7155 oxis 2= sup (] B}y (1~ o E) and
|7 fscei = Ml = sup (@l Lifxz )0l El).

These equalities are one of motivations of this note. In Section 5, we consider pointwise esti-
mates for distribution functions of maximal operators defined by rearrangements and medians.
Finally, we give a proof of a fundamental fact for non-atomic space, which is applied in this
note.

I would appreciate it if you could give me some comments or point out mistakes in this
note.

2 Three rearrangements

2.1 Inequalities among three rearrangements
In this subsection, we show the following.

Proposition 2.1. For any t € (0, 00),
R[fI(t) < Li[f](t) = La[f](2). (2)



Remark 2.1. The first inequality still holds at t = 0, because L1[f](0) = oo. On the other
hand, the second one fails att = 0. For example, if f =1, then L1[f](0) = co and Ly[f](0) = 1.

Proof. The first inequality is obvious from definitions.

We shall show Li[f](t) < Lo[f](t) for t € (0,00). In the case Li[f](t) = oo, because
dg(A) >t for any A > 0 and (R™; dz) is a non-atomic space, there is a subset A C {|f| > A}
such that |A| = ¢, which implies Lo[f](t) > A. Thus, Ly[f](t) = co. In the case L;[f](t) < oo,
it holds ds(L1[f](t) —e) > t for any ¢ > 0. Similarly as above, there exists a subset B C {|f| >
Ly[f](t) — €} so that |B| = t, which yields

Lo [f](t) 2 inf [f(2)] = Li[£](2) — e

Therefore, Ly[f](t) < Lso[f](t).

Next, we shall prove the inequality in the opposite direction: Li[f](t) > Lo[f](t). We may
assume that there is A € (0, 00) such that ds(\) < t, because if this fails, L, [f](¢) = inf ) = co.
We observe that every C' C R™ with |C| = t have z¢ € C satisfying |f(z¢)| < A. In fact,
|f| > A on C means |C| < t. Hence, Lo[f](t) < A, and then Lo[f](t) < Li[f](1). O

2.2 Right/left continuity
It is well-known that R[f] is a right continuous function on (0, c0).
Proposition 2.2. L[f] is left continuous on (0, 00).

Proof. We show the continuity of Li[f].

Fix t € (0,00) and we show the left continuity at ¢. It is sufficient to consider the case
Ly[f](t) < oo. From the definition of L;[f], we see that d;(L,[f](t) + ) < t for any € > 0.
Thus, there is 0 € (0,¢) so that

de(L1[f](t) +¢) <t —o.

This means that Li[f](t — ) < Ly [f](t) + . O

2.3 Equimeasurability
Equimeasurability of f and R[f] is well-known. Here, we prove the same fact with L[f].

Proposition 2.3. L[f] is equimeasurable with f, that is
dr(X) = dprgp(A) for A € [0, 00).

Proof. We prove this for Ly[f].
Fix A € [0, 00) and denote

Oy = {t € (0,00); La[f](t) > A}

Qy is one of O, (0,7), (0,77 or (0,00) with some T € (0, 00).

o Case: 0\ = (). In this case, since dp,[;)(A\) = 0 it is enough to show d(\) = 0. We assume that
dg(A) > 0. Then, from the right continuity of the distribution function, there are 7 € (0, c0)
and 6 € (0,00) such that ds(A+6) > 7. We can find a measurable subset A C {|f| > A + 4}
satisfying |A| = 7. This fact implies Ly[f](7) > A + € that is a contradiction.



o Case: Q) = (0,T) or (0,7]. In this case T = sup Q). For any ¢ € (0,7!), it holds Lo[f|(T —

e) > A. Hence, there exists A. C R" so that |A.] = T — ¢ and inj |f(x)] > A. Thus
TEAe

df(A) > |A.| =T — e, which means ds(\) > T If we assume that dg(\) > T, then there exist

to € (T,dg(N)) and 0 > 0 such that dg(A + ) > to. Since we can find Bs C {|f] > A+ d}
fulfilling |Bs| = to, one has

Lolf)(te) > inf |f(2)] = A+3,

z€Bj
and then a contradiction ¢y < T occurs. Therefore, d¢(\) =T = [Qy] = dp,1(A).

o Case: Q) = (0,00). We shall prove ds(\) >t for any ¢t € (0,00). Because Ly[f](t) > A for
t € (0,00), we have measurable subsets {A;}1c(0,00) enjoying |A4;| = ¢ and inj |f(z)| > A, which
TEAL

yields ds(X) > |A] = t. O

3 Median

Median was firstly introduced by Carleson in [2]. All median satisfy also
{E: f<mglo, E)}| < alE] & [{E:[f<mg(o, E)}| < (1-a)lE]
Lemma 3.1. If0 < |E| < oo, myy(a, E) > 0.
Proof. If mys (o, E) < 0, then
1| = |[{B; 1] > my(a, )} < (1 - @) B < |E|
[

The following convergence was proved by Fujii [4] in the case a = 1/2, and Poelhuis and
Torchinsky [8] in other cases.
Lemma 3.2.
lim my(a, Q) = f(z) a.e.

TEQ
Nz}

Remark 3.1. This should be compared with the Lebesque differential theorem. Remark that
this lemma does not need the integrability of f.

We refer [8] for other properties of medians.

3.1 Maximal median

Before discussion on the relation among rearrangements and median, we clear that the maximal
median My («, E) is well-defined.

Proposition 3.1. Let 0 < |E| < oo. For A:=={m e R: [{E: f <m}| <«a|E|},
M¢(o, E) := max A < 00

and M¢(a, E) is a median of f over E with «.



Proof. o Step 1: A # ().
If A= 0, then [{F : f < m}| > a|E| for any m € R. Hence, from |f(z)| < oo a.e., we have a
contradiction:

0=|[|E:f<-0}

leN

= lim [{E: f <~} = alE].

o Step 2: a:=sup A < oco.
We assume that [{E: f < m}| < a|E| for any m € R. Therefore, the following conflict occurs

Bl = [{E [ < oo} = lim |{E: f < (}] < alE],

and then one finds my € R so that [{F : f < mg}| > «|F|. Thus, sup A < my < co. Hence,
there exists a = sup A and a < oo.

o Step 3: a € A, ie. a=max A= Ms(a, E).

This can be seen as follows:

HE: f<a}| = EILHOE|{E cf<a—1/t} < olE|.

Next, we check that the maximal median is in fact a median. Obviously, from the definition,
we have

{E:f <Mi(a, E)}| <alE] & |{E:f2= Mg, E)+ 1/} <(1-a)|E], ((€N).
The second inequality yields

{E: f > My(a, E)}| = lim [{E: [ > My(a. B) + 1/0}] < (1~ )| ]

Therefore, the maximal median M(a, E) is a median. O

3.2 Pointwise inequalities for three rearrangements and medians

Here, we prove a local counterpart of Proposition 2.1 involving medians. The first two inequal-
ities were proved by Poelhuis and Torchinsky [8], and the last equality can be showed from the
same argument as Proposition 2.1.

Proposition 3.2. If0 < |E| < oo, then for all of medians my(c, E) it holds true that

Rfxel(alEl) <mig(1 - a, E) < Lo[fxel(a|E]) = La[fxel(alE]). (3)

Remark 3.2. The first two inequalities was proved by Poelhuis and Torchinsky [8]. In there,
they stated that the third one is bounded by the first one. But, testing a simple function f we
see that this fails.

Proof. For simplicity, we write R = R[fxg](c|E|), L1 = L1[fxe](a|E]) and Ly = Lo[fx£|(a|Q)]).
Recall that 0 < myz(1 — «, E) < Mg (1 — o, E) < oo from Lemma 3.1 and Proposition ?7?.

o Step 1: R <my(1 — o, E).
This is deduced from the definition of median: [{E;|f| > my(1 —a, E)}| < alE|.




o Step 2: myp(1 — o, E) < Ly.
We may assume Ly € [0,00). Fix ¢ > 0 and observe that [{E;|f| < Ly +¢}| > (1 — o)|E|. If
Ly +¢ <myy(1 — o, E), then one has the contradiction

(1=a)|E[ <{E;|fI < Li+e}| < (1-a)lE]

o Step 3: Ly = Lo.
Because (F;dzx) is a non-atomic measure space, the same argument as that in the proof of
Proposition 2.1 can work. O]

4 Equivalence quasi-norms of L"*° with rearrangements
and medians

In this section, using propositions in previous sections, we show equivalents of L”*°-quasi-norms,
which based on rearrangements and medians.

Proposition 4.1. Let p € (0,00).
(i)
1F e = I FlIZoe-
(i)
Hf”fnoo(E) = Hf”?p,oo(E) = Hf”fmo(E)

Proof. (i): Since R[f](t) < L[f]1(t), [[fI%e < [f]|Ep. To show the opposite direction, we
take t € (0, 00) fulfilling L[f](¢t) > 0 and € € (0, L[f](t)). Therefore, we can see

£ 1z = Sup Adp(NY? > (LIf)(t) — e)ds (LLf]() = €)'/7
> (LIfI(t) — o)t/

Taking the limit € — 0, we have sup tYPL[f](t) < ||f]|% . Hence, ||f||Fpee < |||
>0
L[f]1(#)>0
(ii): It is sufficient to show that [|f|| roo(my = IS | Inoo(iy- Moreover, it is enough to prove,
from Proposition 3.2,

IIfIprm(E) < ||f||]L%P1°°(E)'

This is done from the same argument above with f = fyg. [

5 Distribution function estimates for maximal operators
of rearrangements and medians

In this section, we consider the boundedness of the following maximal operators: for x € 2

mgolfl(z) = sup R[fxql(al@l),

QDOQ>3z

maolf1(x) == sup myz(1 —a,Q) and

QDQ>z

mgalfl(@) = sup L[fxol(c|Ql),

QD@3



where 2 is a measurable subset of R™ and the supremums are taken over all of cubes @) C 2
including z. Here, ‘cube’ means a cube whose slides are parallel to axes. When 2 = R", we
abbreviate ). Proposition 3.2 says that

mf,ﬂ[f] (z) < mZZQ[f] (z) < még[f] ()

for all z € Q.

Proposition 5.1. For any A > 0,
{Qmgolf] > N < a7 M| pe {5 ] > A}

Consequently, mf o, myq and mf o are bounded operators on LP(Q) for all p € (0,00) and
g € (0,00].

Proof. If A < m[,o[f](x), then there exists a cube @ C Q containing z so that L[fxq](«|Q]) >
A. Hence, we can find Ey C @ fulfilling |Eg| = «|Q| and ir}zf |f(z)] > A. Since {Q;|f| >
TELQ

A > |Eg| = a|Qf, we see M (x{o;f>r)(x) > «, where M is the Hardy-Littlewood maximal
operator. Therefore,

{2 maolf] > A < HM (xqursa) = o
= Jim [{M(xqarn) > o= 1/¢}]
M|

< lim ————— .
R — T X qes 1523 e

L—o0

= a7 | M|l pne {5 [ ] > A}

Consequently, we get [[mE o[l @) < @~ Mg pioe] Fllzroco). =

6 Appendix

Let (X,|-|) be a measure space with |X| < co. A measurable subset £ C X with |E| > 0 is
an atom if the measure of any measurable subset F' C E is 0. If X has no atoms, then X is a
non-atomic space.

Proposition 6.1. Let (X, |- |) be a non-atomic measure space with 0 < |X| < oco. For any
a € (0,]|X]], there exists E C X so that |E| = .

Proof. We may assume that o < | X].
o Claim: If F' C X and 0 < 8 < |F|, then there is F3 C F such that 0 < |Fz| < S.
Since F' is not an atom, there is A; C F satisfying 0 < |A;| < |F|. Define

1
Ay if [Ay] < SIF]

1 1
By the same argument, we can find A5 C A} C F fulfilling 0 < |A43] < i\Aﬂ < Z]F\ Repeating

this argument, this claim is verified.



From the claim, one has E; C X so that 0 < |E;| < a. Define
U :={BCX\FE;;0<|B|<a—|Ei|} and U] :={B e Uy;1<|B|}.
The claim ensures that U; # (). Let
B, e Uj %f Ul #0
U1 if U{ = (Z)

Similarly, we define
1
U; = {B - X\(El UEQ);O < ’B| < a-— ’El UEQ’} and Ué = {B € UQ;E < |B‘},

and then take
B, e U, %f Ul #10
Ug if Ué = (Z)

Repeating this, we can get {E,,}5°_, C X satisfying either

Epi1 € Uy, = {BCX\(EIU"'UEm);O<|B|<Q_Z|Ej|}7&9

=1
or

1
En1 €U}, = {B eU,;, — < |B|}
m

Moreover, the last case occurs if and only if U}, # 0. E := UX_, E,, enjoys |E| < «. In the case
|E| = «, the proof is completed. In the case |E| < «a, we have | X\E| > o — |E| > 0. Hence
from the claim, there is F' C X\ E so that

0<|Fl<a—|El<a-> |E|

J=1

1
for any m € N. Since there is M € N so that 7 < |F|, F € U], for any m > M. Therefore,

1

if m > M, then — < |E,,|, which implies |E| = oo. This contradicts with |E| < a. Thus,
m

|E| = a. O

7 A problem from Prof. Nakai

After the talk, Prof. Nakai asked me the following problem.

e In the case R[fxg|(a|E]) < L[fxe|(a|E|), are all real numbers between them median of
fover Ewithl—a?

What I can say for this, up to now, is that R[fxg](«|F|) is a median. This can be seen as
follows. From the right continuity of the distribution, it holds

HE: [f] > R xel(@|ED)} = dpy(RIfxpl(al E]) < o Bl



On the other hand, from Proposition 3.2, we have
{E; |fl < RIfxsl(al BN} < [{ B[] <myp(1 — o, B)}| < (1 - a)|E].

These means that R[fxg](«|F|) is a median of f over F with 1 — a. Combining Proposition
3.2, we know that R[fxg|(a|E]) is the minimum of such medians. It is not hard to see that
if a real number a is between distinct medians, then a is also a median. From these, we
know that the set of all medians of f over F with fixed « is a closed interval. But I do not
know when the maximal median Mz (1 — «, E) coincides with L[fxg|(a|E|). Of course, when

R[fxel(alEl) = L{fxsl(alEl), L{fxel(alE]) is also a median.
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