Three rearrangements and medians

Yohei Tsutsui *
(Shinshu University)
Dedicated to Professor Yasuo Komori-Furuya on his sixtieth birthday

Abstract

Relations among non-increasing (right or left) continuous rearrangements and medians are discussed, and then equivalences of (quasi-)norms of weak Lebesgue space are given. Most part of the statements in this note are not results by the author. These are already known and applied in several literatures.

1 Introduction

In this article, we assume that f is a measurable function, from $\mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, satisfying $|f(x)|<\infty$ a.e. This property is fulfilled if $f \in L^{p, \infty},(p \in(0, \infty))$, for example. For a measurable subset $\Omega \subset \mathbb{R}^{n},|\Omega|$ means the n-dimensional Lebesgue measure of Ω. Let $E \subset \mathbb{R}^{n}$ be a non-empty measurable subset with finite volume $|E|$, and $\alpha \in(0,1)$. The distribution function of f is denoted by

$$
d_{f}(\lambda):=\left|\left\{x \in \mathbb{R}^{n} ;|f(x)|>\lambda\right\}\right| \geq 0
$$

for $\lambda \in[0, \infty)$. This is right continuous on $[0, \infty)$. We define $\inf \emptyset:=\infty$. We use the fact that \mathbb{R}^{n}, with the Lebesgue measure, is a non-atomic space.

We discuss pointwise relations among the following non-increasing rearrangements:

$$
\begin{aligned}
& R[f](t):=\inf \left\{\lambda>0: d_{f}(\lambda) \leq t\right\}=\inf \left\{\lambda \geq 0: d_{f}(\lambda) \leq t\right\} \geq 0 \\
& L_{1}[f](t):=\inf \left\{\lambda>0: d_{f}(\lambda)<t\right\}=\inf \left\{\lambda \geq 0: d_{f}(\lambda)<t\right\} \geq 0 \\
& L_{2}[f](t):=\sup _{|A|=t} \inf _{x \in A}|f(x)| \geq 0,
\end{aligned}
$$

for $t \in(0, \infty)$. I think that $R[f]$ is the most popular one, and it is well known that $R[f]$ is right continuous on $(0, \infty)$ and is equimeasurable with $|f|$. The author had firstly encountered others in papers by Lerner [6] and [7], see also [1] and [3]. The main purpose of this note is to give proofs of fundamental facts for these rearrangements and median. I should emphasize that most part of propositions in this note are already known, although the author could not find proofs in literatures.

In Section 2, we give a proof of the following

$$
R[f](t) \leq L_{1}[f](t)=L_{2}[f](t) \quad \text { for } t \in(0, \infty)
$$

[^0]After that, we show the left continuity of $L[f]=L_{1}[f]=L_{2}[f]$ on $(0, \infty)$ and the equimeasurability of f and $L[f]$. Owning to their continuities, the inequality $L[f](t) \leq R[f](t)$ fails in general. One can see this by considering simple functions.

The local analogy involving medians

$$
R\left[f \chi_{E}\right](\alpha|E|) \leq m_{|f|}(1-\alpha, E) \leq L_{1}\left[f \chi_{E}\right](\alpha|E|)=L_{2}\left[f \chi_{E}\right](\alpha|E|)
$$

is considered in Section 3. The median $m_{f}(\alpha, E)$ of f over E with $\alpha \in(0,1)$ is a real number satisfying

$$
\begin{equation*}
\left|\left\{E: f<m_{f}(\alpha, E)\right\}\right| \leq \alpha|E| \quad \& \quad\left|\left\{E: f>m_{f}(\alpha, E)\right\}\right| \leq(1-\alpha)|E| \tag{1}
\end{equation*}
$$

Median is not unique. To avoid this inconvenience, it is useful to consider the maximal median:

$$
M_{f}(\alpha, E):=\max \{m \in \mathbb{R}:|\{E: f<m\}| \leq \alpha|E|\} \mid .
$$

Medians can be regarded as an average of f on E in the sense of $L^{1, \infty}$, on the other hand $|E|^{-1} \int_{E} f d x$ is an average in the sense of L^{1}. We see that $M_{f}(\alpha, E)$ is well-defined and a median.

In Section 4, we show that:

$$
\|f\|_{L^{p, \infty}}^{R}=\|f\|_{L^{p, \infty}}^{L} \quad \& \quad\|f\|_{L^{p, \infty}(E)}^{R}=\|f\|_{L^{p, \infty}(E)}^{m}=\|f\|_{L^{p, \infty}(E)}^{L}
$$

where

$$
\begin{aligned}
& \|f\|_{L^{p, \infty}}^{R}:=\sup _{\lambda>0} \lambda d_{f}(\lambda)^{1 / p}=\sup _{t>0} t^{1 / p} R[f](t) \\
& \|f\|_{L^{p, \infty}}^{L}:=\sup _{t>0} t^{1 / p} L[f](t) \\
& \|f\|_{L^{p, \infty}(E)}^{R}:=\left\|f \chi_{E}\right\|_{L^{p, \infty}}^{R}=\sup _{0<\alpha<1}(\alpha|E|)^{1 / p} R\left[f \chi_{E}\right](\alpha|E|) \\
& \|f\|_{L^{p, \infty}(E)}^{m}:=\sup _{0<\alpha<1}(\alpha|E|)^{1 / p} m_{|f|}(1-\alpha, E) \text { and } \\
& \|f\|_{L^{p, \infty}(E)}^{L}:=\left\|f \chi_{E}\right\|_{L^{p, \infty}}^{L}=\sup _{0<\alpha<1}(\alpha|E|)^{1 / p} L\left[f \chi_{E}\right](\alpha|E|) .
\end{aligned}
$$

These equalities are one of motivations of this note. In Section 5, we consider pointwise estimates for distribution functions of maximal operators defined by rearrangements and medians. Finally, we give a proof of a fundamental fact for non-atomic space, which is applied in this note.

I would appreciate it if you could give me some comments or point out mistakes in this note.

2 Three rearrangements

2.1 Inequalities among three rearrangements

In this subsection, we show the following.
Proposition 2.1. For any $t \in(0, \infty)$,

$$
\begin{equation*}
R[f](t) \leq L_{1}[f](t)=L_{2}[f](t) \tag{2}
\end{equation*}
$$

Remark 2.1. The first inequality still holds at $t=0$, because $L_{1}[f](0)=\infty$. On the other hand, the second one fails at $t=0$. For example, if $f \equiv 1$, then $L_{1}[f](0)=\infty$ and $L_{2}[f](0)=1$.

Proof. The first inequality is obvious from definitions.
We shall show $L_{1}[f](t) \leq L_{2}[f](t)$ for $t \in(0, \infty)$. In the case $L_{1}[f](t)=\infty$, because $d_{f}(\lambda) \geq t$ for any $\lambda>0$ and $\left(\mathbb{R}^{n} ; d x\right)$ is a non-atomic space, there is a subset $A \subset\{|f|>\lambda\}$ such that $|A|=t$, which implies $L_{2}[f](t) \geq \lambda$. Thus, $L_{2}[f](t)=\infty$. In the case $L_{1}[f](t)<\infty$, it holds $d_{f}\left(L_{1}[f](t)-\varepsilon\right) \geq t$ for any $\varepsilon>0$. Similarly as above, there exists a subset $B \subset\{|f|>$ $\left.L_{1}[f](t)-\varepsilon\right\}$ so that $|B|=t$, which yields

$$
L_{2}[f](t) \geq \inf _{x \in B}|f(x)| \geq L_{1}[f](t)-\varepsilon
$$

Therefore, $L_{1}[f](t) \leq L_{2}[f](t)$.
Next, we shall prove the inequality in the opposite direction: $L_{1}[f](t) \geq L_{2}[f](t)$. We may assume that there is $\lambda \in(0, \infty)$ such that $d_{f}(\lambda)<t$, because if this fails, $L_{1}[f](t)=\inf \emptyset=\infty$. We observe that every $C \subset \mathbb{R}^{n}$ with $|C|=t$ have $x_{C} \in C$ satisfying $\left|f\left(x_{C}\right)\right| \leq \lambda$. In fact, $|f|>\lambda$ on C means $|C|<t$. Hence, $L_{2}[f](t) \leq \lambda$, and then $L_{2}[f](t) \leq L_{1}[f](t)$.

2.2 Right/left continuity

It is well-known that $R[f]$ is a right continuous function on $(0, \infty)$.
Proposition 2.2. $L[f]$ is left continuous on $(0, \infty)$.
Proof. We show the continuity of $L_{1}[f]$.
Fix $t \in(0, \infty)$ and we show the left continuity at t. It is sufficient to consider the case $L_{1}[f](t)<\infty$. From the definition of $L_{1}[f]$, we see that $d_{f}\left(L_{1}[f](t)+\varepsilon\right)<t$ for any $\varepsilon>0$. Thus, there is $\delta \in(0, t)$ so that

$$
d_{f}\left(L_{1}[f](t)+\varepsilon\right)<t-\delta .
$$

This means that $L_{1}[f](t-\delta) \leq L_{1}[f](t)+\varepsilon$.

2.3 Equimeasurability

Equimeasurability of f and $R[f]$ is well-known. Here, we prove the same fact with $L[f]$.
Proposition 2.3. $L[f]$ is equimeasurable with f, that is

$$
d_{f}(\lambda)=d_{L[f]}(\lambda) \text { for } \lambda \in[0, \infty)
$$

Proof. We prove this for $L_{2}[f]$.
Fix $\lambda \in[0, \infty)$ and denote

$$
\Omega_{\lambda}:=\left\{t \in(0, \infty) ; L_{2}[f](t)>\lambda\right\} .
$$

Ω_{λ} is one of $\emptyset,(0, T),(0, T]$ or $(0, \infty)$ with some $T \in(0, \infty)$.
\circ Case: $\Omega_{\lambda}=\emptyset$. In this case, since $d_{L_{2}[f]}(\lambda)=0$ it is enough to show $d_{f}(\lambda)=0$. We assume that $d_{f}(\lambda)>0$. Then, from the right continuity of the distribution function, there are $\tau \in(0, \infty)$ and $\delta \in(0, \infty)$ such that $d_{f}(\lambda+\delta)>\tau$. We can find a measurable subset $A \subset\{|f|>\lambda+\delta\}$ satisfying $|A|=\tau$. This fact implies $L_{2}[f](\tau) \geq \lambda+\varepsilon$ that is a contradiction.

- Case: $\Omega_{\lambda}=(0, T)$ or $(0, T]$. In this case $T=\sup \Omega_{\lambda}$. For any $\varepsilon \in\left(0, T^{-1}\right)$, it holds $L_{2}[f](T-$ $\varepsilon)>\lambda$. Hence, there exists $A_{\varepsilon} \subset \mathbb{R}^{n}$ so that $\left|A_{\varepsilon}\right|=T-\varepsilon$ and $\inf _{x \in A_{\varepsilon}}|f(x)|>\lambda$. Thus $d_{f}(\lambda) \geq\left|A_{\varepsilon}\right|=T-\varepsilon$, which means $d_{f}(\lambda) \geq T$. If we assume that $d_{f}(\lambda)>T$, then there exist $t_{0} \in\left(T, d_{f}(\lambda)\right)$ and $\delta>0$ such that $d_{f}(\lambda+\delta)>t_{0}$. Since we can find $B_{\delta} \subset\{|f|>\lambda+\delta\}$ fulfilling $\left|B_{\delta}\right|=t_{0}$, one has

$$
L_{2}[f]\left(t_{0}\right) \geq \inf _{x \in B_{\delta}}|f(x)| \geq \lambda+\delta
$$

and then a contradiction $t_{0} \leq T$ occurs. Therefore, $d_{f}(\lambda)=T=\left|\Omega_{\lambda}\right|=d_{L_{2}[f]}(\lambda)$.

- Case: $\Omega_{\lambda}=(0, \infty)$. We shall prove $d_{f}(\lambda) \geq t$ for any $t \in(0, \infty)$. Because $L_{2}[f](t)>\lambda$ for $t \in(0, \infty)$, we have measurable subsets $\left\{A_{t}\right\}_{t \in(0, \infty)}$ enjoying $\left|A_{t}\right|=t$ and $\inf _{x \in A_{t}}|f(x)|>\lambda$, which yields $d_{f}(\lambda) \geq\left|A_{t}\right|=t$.

3 Median

Median was firstly introduced by Carleson in [2]. All median satisfy also

$$
\left|\left\{E: f<m_{f}(\alpha, E)\right\}\right| \leq \alpha|E| \quad \& \quad\left|\left\{E: f<m_{f}(\alpha, E)\right\}\right| \leq(1-\alpha)|E| .
$$

Lemma 3.1. If $0<|E|<\infty, m_{|f|}(\alpha, E) \geq 0$.
Proof. If $m_{|f|}(\alpha, E)<0$, then

$$
|E|=\left|\left\{E ;|f|>m_{|f|}(\alpha, E)\right\}\right| \leq(1-\alpha)|E|<|E| .
$$

The following convergence was proved by Fujii [4] in the case $\alpha=1 / 2$, and Poelhuis and Torchinsky [8] in other cases.

Lemma 3.2.

$$
\lim _{\substack{x \in Q \\ Q \backslash\{x\}}} m_{f}(\alpha, Q)=f(x) \text { a.e. }
$$

Remark 3.1. This should be compared with the Lebesgue differential theorem. Remark that this lemma does not need the integrability of f.

We refer [8] for other properties of medians.

3.1 Maximal median

Before discussion on the relation among rearrangements and median, we clear that the maximal median $M_{f}(\alpha, E)$ is well-defined.

Proposition 3.1. Let $0<|E|<\infty$. For $A:=\{m \in \mathbb{R}:|\{E: f<m\}| \leq \alpha|E|\}$,

$$
M_{f}(\alpha, E):=\max A<\infty
$$

and $M_{f}(\alpha, E)$ is a median of f over E with α.

Proof. \circ Step 1: $A \neq \emptyset$.
 contradiction:

$$
0=\left|\bigcap_{\ell \in \mathbb{N}}\{E: f<-\ell\}\right|=\lim _{\ell \rightarrow \infty}|\{E: f<-\ell\}| \geq \alpha|E|
$$

- Step 2: $a:=\sup A<\infty$.

We assume that $|\{E: f<m\}| \leq \alpha|E|$ for any $m \in \mathbb{R}$. Therefore, the following conflict occurs

$$
|E|=|\{E: f<\infty\}|=\lim _{\ell \rightarrow \infty}|\{E: f<\ell\}| \leq \alpha|E|,
$$

and then one finds $m_{0} \in \mathbb{R}$ so that $\left|\left\{E: f<m_{0}\right\}\right|>\alpha|E|$. Thus, $\sup A \leq m_{0}<\infty$. Hence, there exists $a=\sup A$ and $a<\infty$.

- Step 3: $a \in A$, i.e. $a=\max A=M_{f}(\alpha, E)$.

This can be seen as follows:

$$
|\{E: f<a\}|=\lim _{\ell \rightarrow \infty}|\{E: f<a-1 / \ell\}| \leq \alpha|E| .
$$

Next, we check that the maximal median is in fact a median. Obviously, from the definition, we have

$$
\left|\left\{E: f<M_{f}(\alpha, E)\right\}\right| \leq \alpha|E| \quad \& \quad\left|\left\{E: f \geq M_{f}(\alpha, E)+1 / \ell\right\}\right|<(1-\alpha)|E|, \quad(\ell \in \mathbb{N}) .
$$

The second inequality yields

$$
\left|\left\{E: f>M_{f}(\alpha, E)\right\}\right|=\lim _{\ell \rightarrow \infty}\left|\left\{E: f \geq M_{f}(\alpha, E)+1 / \ell\right\}\right| \leq(1-\alpha)|E| .
$$

Therefore, the maximal median $M_{f}(\alpha, E)$ is a median.

3.2 Pointwise inequalities for three rearrangements and medians

Here, we prove a local counterpart of Proposition 2.1 involving medians. The first two inequalities were proved by Poelhuis and Torchinsky [8], and the last equality can be showed from the same argument as Proposition 2.1.

Proposition 3.2. If $0<|E|<\infty$, then for all of medians $m_{f}(\alpha, E)$ it holds true that

$$
\begin{equation*}
R\left[f \chi_{E}\right](\alpha|E|) \leq m_{|f|}(1-\alpha, E) \leq L_{1}\left[f \chi_{E}\right](\alpha|E|)=L_{2}\left[f \chi_{E}\right](\alpha|E|) \tag{3}
\end{equation*}
$$

Remark 3.2. The first two inequalities was proved by Poelhuis and Torchinsky [8]. In there, they stated that the third one is bounded by the first one. But, testing a simple function f we see that this fails.

Proof. For simplicity, we write $R=R\left[f \chi_{E}\right](\alpha|E|), L_{1}=L_{1}\left[f \chi_{E}\right](\alpha|E|)$ and $L_{2}=L_{2}\left[f \chi_{E}\right](\alpha|Q|)$. Recall that $0 \leq m_{|f|}(1-\alpha, E) \leq M_{|f|}(1-\alpha, E)<\infty$ from Lemma 3.1 and Proposition ??.

- Step 1: $R \leq m_{|f|}(1-\alpha, E)$.

This is deduced from the definition of median: $\left|\left\{E ;|f|>m_{|f|}(1-\alpha, E)\right\}\right| \leq \alpha|E|$.

- Step 2: $m_{|f|}(1-\alpha, E) \leq L_{1}$.

We may assume $L_{1} \in[0, \infty)$. Fix $\varepsilon>0$ and observe that $\left|\left\{E ;|f| \leq L_{1}+\varepsilon\right\}\right|>(1-\alpha)|E|$. If $L_{1}+\varepsilon<m_{|f|}(1-\alpha, E)$, then one has the contradiction

$$
(1-\alpha)|E|<\left|\left\{E ;|f| \leq L_{1}+\varepsilon\right\}\right| \leq(1-\alpha)|E| .
$$

- Step 3: $L_{1}=L_{2}$.

Because ($E ; d x$) is a non-atomic measure space, the same argument as that in the proof of Proposition 2.1 can work.

4 Equivalence quasi-norms of $L^{p, \infty}$ with rearrangements and medians

In this section, using propositions in previous sections, we show equivalents of $L^{p, \infty}$-quasi-norms, which based on rearrangements and medians.

Proposition 4.1. Let $p \in(0, \infty)$.
(i)

$$
\|f\|_{L^{p, \infty}}^{R}=\|f\|_{L^{p, \infty}}^{L} .
$$

(ii)

$$
\|f\|_{L^{p, \infty}(E)}^{R}=\|f\|_{L^{p, \infty}(E)}^{m}=\|f\|_{L^{p, \infty}(E)}^{L} .
$$

Proof. (i): Since $R[f](t) \leq L[f](t),\|f\|_{L^{p, \infty}}^{R} \leq\|f\|_{L^{p, \infty}}^{L}$. To show the opposite direction, we take $t \in(0, \infty)$ fulfilling $L[f](t)>0$ and $\varepsilon \in(0, L[f](t))$. Therefore, we can see

$$
\begin{aligned}
\|f\|_{L^{p, \infty}}^{R}=\sup _{\lambda>0} \lambda d_{f}(\lambda)^{1 / p} & \geq(L[f](t)-\varepsilon) d_{f}(L[f](t)-\varepsilon)^{1 / p} \\
& \geq(L[f](t)-\varepsilon) t^{1 / p}
\end{aligned}
$$

Taking the limit $\varepsilon \rightarrow 0$, we have $\sup _{\substack{t>0 \\ L[f](t)>0}} t^{1 / p} L[f](t) \leq\|f\|_{L^{p, \infty}}^{R}$. Hence, $\|f\|_{L^{p, \infty}}^{L} \leq\|f\|_{L^{p, \infty}}^{R}$.
(ii): It is sufficient to show that $\|f\|_{L^{p, \infty}(E)}^{R}=\|f\|_{L^{p, \infty}(E)}^{L}$. Moreover, it is enough to prove, from Proposition 3.2,

$$
\|f\|_{L^{p, \infty}(E)}^{L} \leq\|f\|_{L^{p, \infty}(E)}^{R} .
$$

This is done from the same argument above with $f=f \chi_{E}$.

5 Distribution function estimates for maximal operators of rearrangements and medians

In this section, we consider the boundedness of the following maximal operators: for $x \in \Omega$

$$
\left\{\begin{array}{l}
m_{\alpha, \Omega}^{R}[f](x):=\sup _{\Omega \supset Q \ni x} R\left[f \chi_{Q}\right](\alpha|Q|), \\
m_{\alpha, \Omega}^{m}[f](x):=\sup _{\Omega \supset \vartheta \ni x} m_{|f|}(1-\alpha, Q) \text { and } \\
m_{\alpha, \Omega}^{L}[f](x):=\sup _{\Omega \supset Q \ni x} L\left[f \chi_{Q}\right](\alpha|Q|),
\end{array}\right.
$$

where Ω is a measurable subset of \mathbb{R}^{n} and the supremums are taken over all of cubes $Q \subset \Omega$ including x. Here, 'cube' means a cube whose slides are parallel to axes. When $\Omega=\mathbb{R}^{n}$, we abbreviate Ω. Proposition 3.2 says that

$$
m_{\alpha, \Omega}^{R}[f](x) \leq m_{\alpha, \Omega}^{m}[f](x) \leq m_{\alpha, \Omega}^{L}[f](x)
$$

for all $x \in \Omega$.
Proposition 5.1. For any $\lambda>0$,

$$
\left|\left\{\Omega ; m_{\alpha, \Omega}^{L}[f]>\lambda\right\}\right| \leq \alpha^{-1}\|M\|_{L^{1} \rightarrow L^{1, \infty}}|\{\Omega ;|f|>\lambda\}| .
$$

Consequently, $m_{\alpha, \Omega}^{R}, m_{\alpha, \Omega}^{m}$ and $m_{\alpha, \Omega}^{L}$ are bounded operators on $L^{p, q}(\Omega)$ for all $p \in(0, \infty)$ and $q \in(0, \infty]$.

Proof. If $\lambda<m_{\alpha, \Omega}^{L}[f](x)$, then there exists a cube $Q \subset \Omega$ containing x so that $L\left[f \chi_{Q}\right](\alpha|Q|)>$ λ. Hence, we can find $E_{Q} \subset Q$ fulfilling $\left|E_{Q}\right|=\alpha|Q|$ and $\inf _{x \in E_{Q}}|f(x)|>\lambda$. Since $\mid\{Q ;|f|>$ $\lambda\}\left|\geq\left|E_{Q}\right|=\alpha\right| Q \mid$, we see $M\left(\chi_{\{\Omega ;|f|>\lambda\}}\right)(x) \geq \alpha$, where M is the Hardy-Littlewood maximal operator. Therefore,

$$
\begin{aligned}
\left|\left\{\Omega ; m_{\alpha, \Omega}^{L}[f]>\lambda\right\}\right| & \leq\left|\left\{M\left(\chi_{\{\Omega ;|f|>\lambda\}}\right) \geq \alpha\right\}\right| \\
& =\lim _{\ell \rightarrow \infty}\left|\left\{M\left(\chi_{\{\Omega ;|f|>\lambda\}}\right)>\alpha-1 / \ell\right\}\right| \\
& \leq \lim _{\ell \rightarrow \infty} \frac{\|M\|_{L^{1} \rightarrow L^{1, \infty}}}{\alpha-1 / \ell}\left\|\chi_{\{\Omega ;|f|>\lambda\}}\right\|_{L^{1}} \\
& =\alpha^{-1}\|M\|_{L^{1} \rightarrow L^{1, \infty}}|\{\Omega ;|f|>\lambda\}| .
\end{aligned}
$$

Consequently, we get $\left\|m_{\alpha, \Omega}^{L}[f]\right\|_{L^{1}, \infty(\Omega)} \leq \alpha^{-1}\|M\|_{L^{1} \rightarrow L^{1, \infty}}\|f\|_{L^{1, \infty}(\Omega)}$.

6 Appendix

Let $(X,|\cdot|)$ be a measure space with $|X|<\infty$. A measurable subset $E \subset X$ with $|E|>0$ is an atom if the measure of any measurable subset $F \subset E$ is 0 . If X has no atoms, then X is a non-atomic space.

Proposition 6.1. Let $(X,|\cdot|)$ be a non-atomic measure space with $0<|X|<\infty$. For any $\alpha \in(0,|X|]$, there exists $E \subset X$ so that $|E|=\alpha$.

Proof. We may assume that $\alpha<|X|$.

- Claim: If $F \subset X$ and $0<\beta \leq|F|$, then there is $F_{\beta} \subset F$ such that $0<\left|F_{\beta}\right|<\beta$.

Since F is not an atom, there is $A_{1} \subset F$ satisfying $0<\left|A_{1}\right| \leq|F|$. Define

$$
A_{1}^{*}:= \begin{cases}A_{1} \quad \text { if }\left|A_{1}\right| \leq \frac{1}{2}|F| \\ F \backslash A_{1} \quad \text { if }\left|A_{1}\right|>\frac{1}{2}|F|\end{cases}
$$

By the same argument, we can find $A_{2}^{*} \subset A_{1}^{*} \subset F$ fulfilling $0<\left|A_{2}^{*}\right| \leq \frac{1}{2}\left|A_{1}^{*}\right| \leq \frac{1}{4}|F|$. Repeating this argument, this claim is verified.

From the claim, one has $E_{1} \subset X$ so that $0<\left|E_{1}\right|<\alpha$. Define

$$
U_{1}:=\left\{B \subset X \backslash E_{1} ; 0<|B|<\alpha-\left|E_{1}\right|\right\} \text { and } U_{1}^{\prime}:=\left\{B \in U_{1} ; 1 \leq|B|\right\}
$$

The claim ensures that $U_{1} \neq \emptyset$. Let

$$
E_{2} \in \begin{cases}U_{1}^{\prime} & \text { if } U_{1}^{\prime} \neq \emptyset \\ U_{1} & \text { if } U_{1}^{\prime}=\emptyset\end{cases}
$$

Similarly, we define

$$
U_{2}:=\left\{B \subset X \backslash\left(E_{1} \cup E_{2}\right) ; 0<|B|<\alpha-\left|E_{1} \cup E_{2}\right|\right\} \text { and } U_{2}^{\prime}:=\left\{B \in U_{2} ; \frac{1}{2} \leq|B|\right\}
$$

and then take

$$
E_{3} \in \begin{cases}U_{2}^{\prime} & \text { if } U_{2}^{\prime} \neq \emptyset \\ U_{2} & \text { if } U_{2}^{\prime}=\emptyset\end{cases}
$$

Repeating this, we can get $\left\{E_{m}\right\}_{m=1}^{\infty} \subset X$ satisfying either

$$
E_{m+1} \in U_{m}:=\left\{B \subset X \backslash\left(E_{1} \cup \cdots \cup E_{m}\right) ; 0<|B|<\alpha-\sum_{j=1}^{m}\left|E_{j}\right|\right\} \neq \emptyset
$$

or

$$
E_{m+1} \in U_{m}^{\prime}:=\left\{B \in U_{m} ; \frac{1}{m} \leq|B|\right\} .
$$

Moreover, the last case occurs if and only if $U_{m}^{\prime} \neq \emptyset . E:=\cup_{m=1}^{\infty} E_{m}$ enjoys $|E| \leq \alpha$. In the case $|E|=\alpha$, the proof is completed. In the case $|E|<\alpha$, we have $|X \backslash E| \geq \alpha-|E|>0$. Hence from the claim, there is $F \subset X \backslash E$ so that

$$
0<|F|<\alpha-|E|<\alpha-\sum_{j=1}^{m}\left|E_{j}\right|
$$

for any $m \in \mathbb{N}$. Since there is $M \in \mathbb{N}$ so that $\frac{1}{M} \leq|F|, F \in U_{m}^{\prime}$ for any $m \geq M$. Therefore, if $m \geq M$, then $\frac{1}{m} \leq\left|E_{m}\right|$, which implies $|E|=\infty$. This contradicts with $|E|<\alpha$. Thus, $|E|=\alpha$.

7 A problem from Prof. Nakai

After the talk, Prof. Nakai asked me the following problem.

- In the case $R\left[f \chi_{E}\right](\alpha|E|)<L\left[f \chi_{E}\right](\alpha|E|)$, are all real numbers between them median of f over E with $1-\alpha$?

What I can say for this, up to now, is that $R\left[f \chi_{E}\right](\alpha|E|)$ is a median. This can be seen as follows. From the right continuity of the distribution, it holds

$$
\left|\left\{E ;|f|>R\left[f \chi_{E}\right](\alpha|E|)\right\}\right|=d_{f_{E}}\left(R\left[f \chi_{E}\right](\alpha|E|)\right) \leq \alpha|E| .
$$

On the other hand, from Proposition 3.2, we have

$$
\left|\left\{E ;|f|<R\left[f \chi_{E}\right](\alpha|E|)\right\}\right| \leq\left|\left\{E ;|f|<m_{|f|}(1-\alpha, E)\right\}\right| \leq(1-\alpha)|E| .
$$

These means that $R\left[f \chi_{E}\right](\alpha|E|)$ is a median of f over E with $1-\alpha$. Combining Proposition 3.2, we know that $R\left[f \chi_{E}\right](\alpha|E|)$ is the minimum of such medians. It is not hard to see that if a real number a is between distinct medians, then a is also a median. From these, we know that the set of all medians of f over E with fixed α is a closed interval. But I do not know when the maximal median $M_{|f|}(1-\alpha, E)$ coincides with $L\left[f \chi_{E}\right](\alpha|E|)$. Of course, when $R\left[f \chi_{E}\right](\alpha|E|)=L\left[f \chi_{E}\right](\alpha|E|), L\left[f \chi_{E}\right](\alpha|E|)$ is also a median.

Acknowledgements

The author was partially supported by JSPS, though Grand-in-Aid-for Young Scientists (B) (No. 15K20919).

References

[1] C. Bennett and R. Sharply, Interpolation of Operators, Pure and Applied Mathematics, vol. 129 (1988).
[2] L. Carleson, BMO-10 years' development, 18th Scandinavian Congress of Mathematicians (Aarhus, 1980), pp. 3-21, Progr. Math., 11, Birkhäuser, Boston, Mass., 1981.
[3] K.M. Chong and P.A. Rice, Equimeasurable rearrangements of functions, Queen's Papers in Pure and Appl. Math., vol. 28, Queen's Univ., Kingston, Ontario, (1971).
[4] N. Fujii, A condition for a two-weight norm inequality for singular integral operators, Studia Math. 98 (1991), no. 3, 175-190.
[5] L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249, Third ed., Springer, New York, (2014).
[6] A.K. Lerner, Maximal functions with respect to differential bases measuring mean oscillation, Anal. Math., 24, 41-58, (1998).
[7] A.K. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx., 4, 277-290, (1998).
[8] J. Poelhuis and A. Torchinsky, Medians, continuity, and vanishing oscillation, Studia Math. 213 (2012), no. 3, 227-242.
[9] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclid Spaces, Princeton Univ. Press, Princeton, NJ, (1971).

[^0]: *Department of Mathematical Sciences, Faculty of Science, Shinshu University, Asashi 3-1-1, Matsumoto, Nagano, 390-8621, Japan. e-mail: tsutsui@shinshu-u.ac.jp

